

Jideofor Ezike

Permanent Address:
Los Angeles, CA

Email: jezike3@gmail.com
Cell: 914.258.4751
<https://jideforezike.com>

OBJECTIVE: PhD Candidate in the Computational & Systems Biology PhD Program at the Massachusetts Institute of Technology. Interested in the intersection of machine learning, and high dimensional biological datasets, to better understand disease progression and developmental biology.

EDUCATION	Carnegie Mellon University , Pittsburgh, PA Bachelor of Science: Chemical Engineering Double Major: Biomedical Engineering	May 2015
	Massachusetts Institute of Technology , Cambridge, MA Thesis: <i>Applications of Native and Engineered Genetic Barcodes in Single-Cell RNA-Sequencing Data to Study Clonal Evolution and Cellular Phenotypic Diversity</i> Doctor of Philosophy: Computational & Systems Biology Advisors: Aviv Regev & Gad Getz	Sept 2018-May 2025
RELEVANT COURSEWORK	6.883: Modeling with machine learning: from algorithms to applications 6.874: Computational Systems Biology: Deep Learning in the Life Science 6.860: Statistical Learning Theory and Applications 18.6501: Fundamentals of Statistics 7.85: The Hallmarks of Cancer	
RESEARCH EXPERIENCE	Regev & Getz Lab at Broad Institute of MIT & Harvard: Graduate Researcher <i>Developing pipelines for studying lineages and tumor evolution in single-cell mutation data:</i> 1. Developed pipeline for denoising somatic mutations from full length scRNA-seq data in the context of cancer. Accounting for inherent false positive and negative noise in scRNA-seq by implementing different heuristic & machine learning approaches for denoising artefactual signal. (<i>manuscript in prep</i>) 2. Reconstructed single-cell lineage trees for PC9 clones using heritable CRISPR indels. Implemented GLMs and Fisher's exact tests of neighboring clades to identify genes and modules that shift and associate with cancer persistence potential. Pharmacological validation experiments demonstrated synergistic effects on lung cancer persister cell survival. Implicated pathways are associated with patient survival and disease progression. (<i>manuscript in prep</i>) 3. The dynamics of hematopoiesis over the human lifespan: Large scRNA-seq study profiling ~60k HSPCs cells ranging from gestation to 77yo across 26 donors. One of lead analysts in study. Quantified lineage fate biases across lifetime as well as identified the genes that drive commitment into these different lineages using graph based lineage tracing methods. (see Nat. Methods paper). 4. Technology development 5' 10x mito-seq Multiple Myeloma (MM) project. Called mitochondrial mutations from novel assay developed in lab to enrich for mitochondrial reads. Identified mitochondrial SNVs in MM patient samples highly associated with CNVs in single cells. Reconstructing lineage trees from mitochondrial SNVs to identify higher resolution subclones in MM patients (n=~20).	Nov 2019-Present
	Regev Lab at Broad Institute of MIT & Harvard: Graduate Rotation Student Applied deep learning methods to analyze single cell data that underwent pooled Crispr-mediated genomic screen (Perturb-seq). Designed and implemented model to predict differential expression of genes using promoter sequences, and guideRNA as feature space to learn.	June 2019-Aug 2019
	6.874 Final Project/Gifford Lab Rotation Project: Graduate Rotation Student Conducted comparative analysis and benchmarking of multiple deep learning methods that predict spectra/distribution of mutations caused by NHEJ repair of Crispr-mediated double strand breaks	Feb 2019-May 2019

	Harvey Lodish Lab at MIT: Research Technician Analyzed single cell RNA sequencing data of primary early erythroid progenitor cells, the precursors to mature red blood cells. Performed clustering and pseudotime inferencing of the individual cells, a metric for estimating developmental stages of an individual cell. My contribution helped identify that cells in the presence of dexamethasone (glucocorticoid steroid widely used for increasing red blood cell output in vitro and in clinic) lagged behind in earlier stages in development where proliferative potential is greater. This finding also was validated with functional assays with mouse primary cells (see Developmental Cell Paper). Followup work with Hojun Li, MD, PhD involves learning the gene programs involved in the dexamethasone response.	July 2018-2019
	Harvey Lodish Lab at MIT: Research Technician Objective was to identify long non-coding RNA that play a role in early red blood cell progenitor's self-renewal capacity. Used public raw sequencing data of red blood cell progenitors to perform de novo assembly of transcriptome. Applied comparative genomics as well as protein-coding filtering techniques to remove transcripts likely to form functional protein and/or small peptides. Performed differential expression analysis to identify hundreds of transcripts that are differentially expressed between two early progenitors. Validated differential expression of few interesting candidates with RT-PCR, using RNA extracted from primary human erythroid CD34+ cells	July 2015-2018
	Whitehead Institute for Biomedical Research at MIT: Research Intern Performed an EMSA phoshomimetic assay that demonstrated when key site (S225) on Heat Shock Factor 1 (HSF1) is mutated to negatively charged aspartate, it loses DNA binding ability, suggesting that phosphorylation is not the switch that activates HSF1. Continuation of research on regulatory activation of HSF1 protein. (see eLife paper).	Jun 2014-Aug 2014
LEADERSHIP	National Society for Black Engineers (NSBE): Programs Chair Managed Programs Zone, consisted of five members. Organize and plan community service events, social events and membership retention events. Member of the Primary Eboard.	Aug 2013-Aug 2014
	Young African Leadership Association: Activities Chair Planned several events to promote awareness of African cultures and ideals.	Aug 2012-Mar 2013
WORK EXPERIENCE	Life Technologies: EHS/Organic Production Intern Performed organic synthesis to identify ideal radical initiator to replace benzoyl peroxide in a product stream. Analyzed both TLC and NMR data to track progression of reactions and ultimately devised first radical initiator free protocol.	Jun 2013-Aug 2013
SKILLS	Bioinformatics: "Tuxedo" RNA-sequencing tools (sequence alignment & assembly), Bedtools, Variant Calling Methods, GATK, single cell transcriptomics Programming: Python, MATLAB, Ruby, R Applications: Pytorch, TensorFlow, Keras, Jupyter Notebook, Pandas, Numpy, Scanpy, Docker Laboratory: Visible Spectrophotometer, High-Performance Liquid Chromatography, confocal microscopy, bacterial cell culture, tissue culture, DNA transformation, aseptic technique, Bradford Lowry Method, Fluorometry, Atomic Absorption, Gravimetric Analysis, Gas Chromatography, NMR, Protein expression, protein purification, SDS PAGE, quickchange mutation, PCR, RT-PCR, DNA cloning, Western Blot, Co-immunoprecipitation Languages: Conversant in Igbo and Proficient in French	
AWARDS	NHGRI F99/K00 Fellow Ford Foundation Fellowship Honorable Mention NIH NIDDK Fellowship Recipient Xerox Technical Minority Scholarship Omega Psi Phi Scholarship Pierre Toussaint Scholarship	April 2023-Present March 2020 Jan 2016-2018 Aug 2011-May 2015 Aug 2011-May 2015
PUBLICATIONS	[1] B. Zhitomirsky*, J. Ezike*, E. Hopkins, M.G. Jones, J. Tsuji, N. Haradhvala, Y. Geffen, M. Miller, B.P. Danysh, L. Parida, J.S. Weissman, A. Regev and G. Getz. Single-cell phylogenies for the study of cancer	

drug persistence potential. (*manuscript in prep*).

[2] **J. Ezike**, T.H. Coorens, J.Lee, M. Nomura, D. Silverbush, A. Regev, M. Suva, G. Getz. Somatic Mutation Denoising from full-length Single-Cell RNA-Sequencing Reveals known Cancer Associated Mutational Signatures and Clonal Markers. (*manuscript in prep*).

[3] H. Li, P. Côté, M. Kuoch, **J. Ezike**, K. Frenis, A. Afanassiev, L. Greenstreet, M. Tanaka-Yano, G. Tarantino, S. Zhang, J. Whangbo, V. Butty, E. Moiso, M. Falchetti, K. Lu, G. Connelly, V. Morris, D. Wang, A. Chen, G. Bianchi, G. Daley, S. Garg, D. Liu, S. Chou, A. Regev, E. Lummertz da Rocha, G. Schiebinger, R. Rowe. The dynamics of hematopoiesis over the human lifespan. *Nat Meth.* 2024.

[4] A. Noronha et al., AXL and error-prone DNA replication confer drug resistance and offer strategies to treat EGFR-mutant lung cancer. *Cancer Discovery*, 2022.

[5] H. Li, A. Natarajan, **J. Ezike**, I.M. Barrasa, Y. Le, Z.A. Feder, H. Yang, C. Ma, S. Markoulaki, H.F. Lodish. Rate of Progression through a Continuum of Transit-Amplifying Progenitor Cell States Regulates Blood Cell Production. *Developmental Cell*, 2019.

[6] X. Gao, H-Y Lee, E. Lummertz da Rocha, C. Zhang, Y-F Lu, D. Li, Y. Feng, **J. Ezike**, R.R. Elmes, I.M. Barrasa, P. Cahan, H. Li, G.Q. Daley, H.F. Lodish. TGF- β Inhibitors Stimulate Red Blood Cell Production by Enhancing Self-Renewal of BFU-E Erythroid Progenitors. *Blood*, 2016.

[7] X. Zheng, J. Krakowiak, N. Patel, A. Beyzavi, **J. Ezike**, A.S. Khalil, D. Pincus. Dynamic control of Hsf1 during heat shock by a chaperone switch and phosphorylation. *eLife*, 2016.